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Abstract

Although West Nile virus (WNV) causes annual cases of neurological disease and deaths in 

humans, a vaccine has not been licensed for human use. Several WNV genes have been targeted 

for mutagenesis in attempts to generate live attenuated vaccine candidates, including the non-

structural protein NS5. Specifically, mutation of WNV NS5-K61A or NS5-E218A in the catalytic 

tetrad of the methyltransferase decreases enzyme activity of the NS5 protein and correspondingly 

attenuates the virus in mice. In this report, NS5-K61A, NS5-E218A, and a double mutant 

encoding both mutations (NS5-K61A/E218A) were compared both in vitro and in vivo. Each 

single mutant was strongly attenuated in highly susceptible outbred mice, whereas the double 

mutant unexpectedly was not attenuated. Sequencing analysis demonstrated that the double mutant 

was capable of reversion at both residues NS5–61 and NS5–218, whereas the genotype of the 

single mutants did not show evidence of reversion. Overall, either NS5-K61A or NS5-E218A 

methyltransferase mutations could be potential mutations to include in a candidate live WNV 

vaccine; however, multiple mutations in the catalytic tetrad of the methyltransferase are not 

tolerated.
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Introduction

West Nile virus (WNV), a mosquito-borne flavivirus, is responsible for annual outbreaks of 

neurological disease in the United States (US) [1]. Specifically, from 2002–2018 the US 

Centers for Disease Control and Prevention reported between 386 and 2,946 annual cases of 

West Nile neuroinvasive disease (WNND) that resulted in between 32 and 286 fatalities each 

year [2]. Additionally, in 2018 Europe experienced the largest outbreak of WNV infections 

to date with more than 2,000 cases reported [3]. Although WNV is a continuous public 

health threat, there is no licensed vaccine for humans.

The flavivirus genus consists of positive-sense single-stranded RNA viruses, many of which 

are of public health importance including yellow fever (YFV), dengue (DENV), Japanese 

encephalitis (JEV), and Zika (ZIKV) viruses. For the prototype flavivirus, YFV, an 

empirically-derived live, attenuated vaccine has been in use since the 1940s and it remains 

one of the most commonly administered live, attenuated vaccines decades after its 

development [4]. WNV belongs to the JEV serocomplex indicating that these two viruses 

are closely related, and although there is no licensed human vaccine for WNV, there are 

multiple live and inactivated vaccines for the control of JEV [5]. The most widely used is the 

live, attenuated vaccine strain JE SA14-14-2 [5], which was empirically derived from wild-

type strain SA14, an isolate collected from a mosquito pool in 1954 [6]. The excellent safety 

profile of SA14-14-2 provides rationale for development of a safe and effective live, 

attenuated WNV vaccine.

The WNV genome is translated from a single open-reading frame that encodes ten viral 

proteins including the three structural proteins (capsid, membrane, and envelope) as well as 

the seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) 

[7]. A safe live WNV vaccine would optimally have mutations that function by different 

attenuating mechanisms in multiple viral genes to prevent reversion to a virulent phenotype. 

Our lab has previously identified strongly attenuating mutations in the envelope, NS1, and 

NS4B genes [8–11], and here we report characterization of attenuating mutations in NS5.

The NS5 protein is the largest NS protein and includes an N-terminal methyltransferase 

(MTase) and a C-terminal RNA-dependent-RNA-polymerase (RdRp) [7]. Previous studies 

of WNV, JEV, YFV, and DENV have reported that the flavivirus NS5 MTase has conserved 

function and sequentially catalyzes N-7 methylation followed by 2’OH methylation to 

generate a type 1 cap on the 5’ end of the viral RNA [12–16]. Importantly, a K-D-K-E 

catalytic tetrad (NS5-K61-D146-K182-E218) is conserved in all flaviviruses, and therefore, 

data on one flavivirus should be applicable to others. The K-D-K-E tetrad (Figure 1) 

catalyzes 2’O methylation, and mutation of any one of the four residues in the tetrad 

completely ablates 2’O methylation and strongly attenuates flaviviruses [12–16]. For 

example, an infectious clone based on WNV strain 3356 harboring single site substitutions 

of either NS5-K61A or NS5-K182A was not lethal in C3H mice inoculated subcutaneously 
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(s.c.) with 105 PFU [12]. Additionally, a WNV strain 3356 clone with a NS5-E218A 

mutation was not lethal in C57Bl/6 mice when 105 PFU was inoculated by either s.c. or 

intracranial (i.c.) routes [13]. The strong degree of attenuation conferred by mutating the K-

D-K-E tetrad provides a promising target for rational flavivirus vaccine design. One group 

has proposed to use MTase mutants as a tetravalent DENV vaccine candidate. Specifically, a 

combination of the four DENV serotypes with double mutations of K61A/E217A (or E216A 

depending on the DENV serotype) inoculated in AG129 mice by the i.p. route reduced 

viremia compared to wild-type and elicited virus-specific neutralizing antibodies and T-cell 

responses [16]. Additionally, DENV-2 with an E217A mutation has strongly reduced vector 

competence in Aedes aegypti mosquitoes [15].

In sum, studies in DENV as well as WNV support the use of NS5 MTase mutants in vaccine 

design. To further characterize WNV MTase mutants in an alternative infectious clone 

backbone based on strain NY99 (Supplementary Table 1) using a highly susceptible outbred 

mouse model, we report characterization of two single site mutants at NS5-K61A and NS5-

E218A, as well as double mutation of both amino acids NS5-K61A/E218A. While the single 

site mutants had an attenuated phenotype, surprisingly, the double mutant had a virulent 

phenotype.

Materials & Methods

Cell Culture

Vero African Green Monkey kidney cells and A549 human alveolar epithelial cells were 

grown at 37°C with 5% CO2 in minimum essential media (MEM) supplemented with 100 

U/mL penicillin, 100 ug/mL streptomycin, 2 mM Lglutamine, 0.1 mM non-essential amino 

acids, and 8% fetal bovine serum.

Generation of WNV Infectious Clones

Viruses were generated using a WNV infectious clone based on strain NY99-flamingo 382–

99 (hereafter referred to as NY99ic) [8, 10, 11, 17, 18]. Quikchange II XL Site-Directed 

Mutagenesis Kit (Agilent) was utilized to generate NS5-K61A and NS5-E218A single 

mutants, as well as an NS5-K61A/E218A double mutant. The mutagenesis primers for the 

K61A mutation were GACCAGCCATCTCAGTGCTGCTGTGCCCCTAGAGAC and 

GTCTCTAGGGGCACAGCAGCACTGAGATGGCTGGTC, and the primers for the E218A 

mutation were ACTCACCCAATACATCGCGTGCGTGGAATTCCG and 

CGGAATTCCACGCACGCGATGTATTGGGTGAGT, listed in 5’ to 3’ direction. After 

mutagenesis, plasmids were transformed into MC1061 competent E. Coli cells and grown in 

200 mL Luria broth (LB) with 100 ug/mL ampicillin. After growth for 14–16 hours, bacteria 

were pelleted and suspended in glucose-tris-EDTA buffer. Cells were lysed using 0.2 M 

NaOH/1% SDS, and lysis was neutralized using 3 M KOAc. After isopropanol precipitation, 

the plasmid was treated with RNAse A for 60 minutes, then purified using 

phenol:chloroform:isoamyl alcohol. The purified plasmid was ethanol precipitated, then 

desalted and concentrated using the QiaQuick PCR purification kit (Qiagen). Preparation, 

purification, and in vitro transcription were carried out for each clone as previously 

described [8]. Viruses were rescued in Vero cells between 3–5 days post transfection, and 
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then passaged once in Vero cells to generate the stocks utilized for the experiments described 

below.

Temperature Sensitivity Assays

Infectivity titers of virus clones were determined in duplicate with plaque assays at both 

37°C and 41°C. Ten-fold serial dilutions of viruses (10−1−10−6) were added to 6-well plates 

of Vero cells and incubated at room temperature for 30 minutes. Cells were overlaid with 

MEM media containing 1% agar and incubated at 37°C or 41°C with 5% CO2. After two 

days, a second overlay was added containing 2% neutral red dye. Plaques were counted on 

days three and four post-infection.

Multiplication Kinetics

Duplicate flasks of Vero cells and A549 cells were infected with a multiplicity of infection 

(MOI) of 0.1. After incubating the virus with the cells for 30 minutes at room temperature, 

MEM containing 2% fetal bovine serum (FBS) was added to the cells and the flasks were 

incubated at 37°C with 5% CO2 for four days. At 0, 24, 36, 48, 72, and 96 hours post-

infection (hpi), two aliquots were collected from each flask, centrifuged at 2,000 RPM for 5 

minutes, and supernatants were then stored at −80°C until titration for infectivity using 

plaque assays as described above.

Quantification of Cytokines

A549 cells grown in 6-well plates were infected with a MOI of 0.1 with each virus. At 36 

hpi, supernatants were collected from each well as described for multiplication kinetics 

experiments above. Samples of each supernatant were gamma irradiated to remove 

infectivity, and cytokines were then measured using the Bio-Plex Pro Human Cytokine 27-

Plex Assay (Bio-Rad) and a Bio-Plex custom assay for human IFN-α2 and IFN-β. Bio-Plex 

assays were performed according to the manufacturer’s guidelines. Cytokine levels were 

compared between NY99ic and each mutant by using a Kruskal-Wallis test with Dunn’s 

multiple comparisons.

Mouse Infection

Groups of five 4 week-old female Swiss Webster outbred mice (Taconic Farms, 

Germantown, NY) were utilized to evaluate attenuation of neuroinvasion. Each virus was 

inoculated by the intraperitoneal (i.p.) route with an inoculum of 500 PFU, and mice that 

survived through 35 days post-infection (dpi) were challenged with a 10,000 PFU i.p. dose 

of NY99ic (≥ 1,000 LD50). Additional groups of mice were also inoculated using an 

undiluted inoculum of each mutant and monitored for 28 dpi for survival. All animal 

experiments complied with the National Institutes of Health guide for the care and use of 

laboratory animals.

Isolation of Virus from Mouse Brain

Brains were harvested from four mice that succumbed to a 500 PFU inoculum of the NS5-

K61A/E218A double mutant. The brains were frozen at −80°C until homogenization. 

Approximately half of each brain was homogenized with 30 cycles/second for two minutes 
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in 500 uL of MEM with 2% FBS using the Qiagen TissueLyser II. Homogenates were 

immediately placed on ice prior to centrifugation at 4°C at a speed of 10,000 RPM for 10 

minutes. The supernatants were collected and immediately titrated using plaque assays prior 

to storage at −80°C.

Sequencing Analysis

RNA was extracted from Vero cell culture supernatant or from mouse brain homogenate 

using the QiaAmp Viral RNA Kit (Qiagen). RNA from mouse brain homogenate was 

amplified using PCR primers specific to the NS5 protein, and PCR products were then 

purified using the QiaQuick PCR Purification Kit (Qiagen) prior to Sanger sequencing. For 

next-generation sequencing of cell culture derived viral RNA, paired-end reads were 

sequenced on the Illumina NextSeq 550 platform. Trimmomatic was utilized to remove 

adapters and any sequences with a quality score below 30. The trimmed reads were aligned 

to a NY99ic reference sequence using Bowtie2 with the very sensitive local parameter. All 

reads were sorted based on genome position and coordinate position using SAMtools, and 

PCR duplicates were marked and removed using Picard Tools (Broad Institute) with the 

optical duplicate pixel distance set to 0. Depth of coverage was measured with SAMtools. 

LoFreq was utilized to measure single nucleotide variants in the viral RNA populations, and 

variants that had a significant strand bias (p < 0.001 with chi-square test or Fishers exact 

test) were not included in the analysis [19]. Individual sequencing contigs were visualized in 

Tablet software (James Hutton Institute) [20].

Molecular Rendering

Pymol was utilized to model the NS5 methyltransferase of WNV (PDB 2OY0) and DENV-2 

(PDB 2P3Q).

Results

Recovery of NS5 Mutants

Single site mutants NS5-K61A and NS5-E218A and the double mutant NS5-K61A/E218A 

were recovered with no compensatory mutations identified in the genomic consensus 

sequences, and each had a similar infectivity titer to NY99ic (Table 1). Infectivity titers were 

measured at both 37°C and 41°C to determine if any of the mutants had a temperature 

sensitive (TS) phenotype. NY99ic had a similar infectivity titer at both 37°C and 41°C. 

Similarly, NS5-K61A and NS5-E218A mutations did not cause a significant reduction in 

infectivity titer at 41°C, whereas, the double mutant NS5-K61A/E218A had a significant 

reduction of 1.1 log10 PFU at 41°C compared to 37°C, demonstrating that the combination 

of the two mutations together induced a TS phenotype (Table 1).

Multiplication kinetics in Vero and A549 cells

Multiplication kinetics of the three mutants were measured compared to the NY99ic parent 

in both Vero (IFN-I deficient) and A549 (IFN-I competent) cell lines. In Vero cells, all three 

mutants had reduced multiplication kinetics compared to NY99ic from 24–96 hpi, with the 

most significant differences occurring between 24–36 hpi (Figure 2a). The NS5-K61A and 

NS5-E218A mutants had the largest decrease in multiplication kinetics at 24 hpi, at which 
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time each had > 100-fold reduction in titer compared to NY99ic (Figure 2a). At 24 hpi, the 

NS5-K61A/E218A double mutant had a phenotype more closely resembling wild-type than 

the NS5 single mutants, but at 36 hpi, all three NS5 mutants had > 10-fold reduction in titer 

compared to NY99ic (Figure 2a).

In A549 cells, the mutants most closely resembled NY99ic at 24 hpi, however, each mutant 

had notably reduced infectivity titers compared to the parent strain between 36–96 hpi 

(Figure 2b). After reaching peak titers by 36 hpi, the infectivity kinetics for each virus 

remained relatively constant throughout the remainder of the time points measured. While 

both NS5-E218A and NS5-K61A/E218A had approximately 10-fold lower infectivity titers 

than NY99ic between 36–96 hpi, the NS5-K61A mutant had a 100-fold reduction in titer 

compared to NY99ic (Figure 2b).

In both Vero and A549 cell lines, the NS5-K61A and NS5-E218A mutants each exhibited 

milder cytopathic effect (CPE) compared to NY99ic and the NS5-K61A/E218A double 

mutant. In addition, CPE in cells infected with the NS5 single mutants was not visible until 

approximately 72 hpi, whereas NY99ic and NS5 double mutant infected cells had apparent 

CPE by 48 hpi.

Induction of cytokines and chemokines in A549 cells

Cytokine and chemokine production was measured in the cell culture supernatant of human 

A549 cells at 36 hpi as this was the time point with maximum infectivity production but 

there was minimal cytopathic effect evident. Seven cytokines (IL-1β, IL-12 p70, IL-1ra, 

IL-10, IL-15, IL-17, PDGF) were not detected in any of the five replicate samples tested or 

were only measured in very low quantities of <1 pg/mL in less than half of the replicates 

tested, which may be a limitation of A549 cells or of the specific time point analyzed. 

Sixteen cytokines and chemokines had no statistical difference in the quantities induced 

when comparing each of the mutants to NY99ic, while six (IL-6, TNF-α, G-CSF, CXCL10, 

CCL2, and CCL5) had differential induction amongst the viruses tested (Supplementary 

Table 2). The pro-inflammatory cytokines IL-6 and TNF-α had decreased production from 

NS5-E218A infected cells compared to NY99ic, however, neither NS5-K61A nor NS5-

K61A/E218A mutation modified the IL-6 or TNF-α pro-inflammatory response compared 

to NY99ic (Figure 3). The double mutant induced a significant increase in G-CSF, whereas 

neither of the single mutants caused any change from NY99ic (Figure 3). Each mutant 

caused an increase in chemokine expression compared to NY99ic-infected cells, including 

higher levels of CXCL10, CCL2, and/or CCL5 (Figure 3). In sum, all three NS5 mutants 

altered inflammatory cytokine or chemokine production, however, each mutant had a unique 

cytokine/chemokine profile.

Mouse attenuated phenotype

Studies in highly susceptible NIH Swiss Webster outbred mice were undertaken to 

investigate the mouse neuroinvasive phenotype following i.p. inoculation of virus. NY99ic 

was strongly neuroinvasive and caused lethality in all mice between 8–12 days post infection 

(dpi) with an inoculum of 500 PFU, whereas, both NS5-K61A and NS5-E218A mutations 

were strongly attenuated for neuroinvasiveness, as all mice survived a relatively low 
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inoculum of 500 PFU as well as a high inoculum of 290,000 PFU and 380,000 PFU, 

respectively (Table 2). Furthermore, no mice infected with NS5-K61A or NS5-E218A 

exhibited clinical signs of neurological disease. Although both single mutants were 

attenuated, the NS5-K61A/E218A double mutant was less attenuated. Three of ten mice 

survived from the 500 PFU inoculum of NS5-K61A/E218A, and three of five mice survived 

from a very high inoculum of >40,000,000 PFU (Table 2). Mice that survived 500 PFU of 

each mutant were also protected from a lethal NY99ic challenge, demonstrating induction of 

a protective immune response (Table 2). The mice that succumbed to infection with the 

double mutant exhibited symptoms including paralysis, slow movement, and dehydration. 

Overall, the double mutant did demonstrate mild attenuation of neuroinvasion and longer 

average survival time compared to NY99ic, however, it was less attenuated than each of the 

single mutants and the virulence of the double mutant was not dose-dependent.

Virus isolation from mouse brain

Virus was harvested from the brains of four mice that succumbed to the 500 PFU inoculum 

of the NS5-K61A/E218A mutant. Three of the mouse brains had viral infectivity titers > 4 

log10 PFU/g, while one of the brains had an infectivity titer > 8 log10 PFU/g (Table 3). 

Sanger sequencing of the NS5 MTase domain verified that each virus reverted to the wild-

type amino acid residues NS5-A61K/A218E (Table 3).

Next-Generation Sequencing of viruses

To further investigate the instability of the genotype of the NS5-K61A/E218A mutant, next-

generation sequencing (NGS) analysis was undertaken on the Vero cell P0, P1, and P5 virus 

stocks. It is well established that RNA viruses exist in diverse mutant swarms, or 

quasispecies, due to the error-prone RNA-dependent-RNA-polymerase [21], therefore, the 

NGS data were utilized to measure diversity in each of the viral populations. Since the P1 

virus stocks were used in the mouse studies, these viruses were the focus of the quasispecies 

analysis. Average sequencing coverage for the P1 viruses was found to be similar and ranged 

between 7,589–7,796 for NY99ic and the NS5-K61A, NS5-E218A, and NS5-K61A/E218A 

mutants. Therefore, each sequencing file was analyzed for single nucleotide variants (SNVs) 

without downsampling. As expected for RNA viruses, many SNV subpopulations were 

detected in each virus (Figure 4). In order to narrow the analysis to SNVs that were most 

prominent only SNVs that comprised 1% or greater of the total RNA population were 

investigated. NY99ic had eleven SNVs detected above 1%, whereas, the NS5-K61A mutant 

had 34, the NS5-E218A mutant had 21, and the NS5 double mutant had nine. Although the 

NS5-K61A/E218A double mutant had only nine significant SNVs, three of these encoded 

reversions of A61K and A218E (Table 4). Specifically, SNVs at nucleotides 7861 and 7862 

were encoded simultaneously (observed on Tablet software), and taken together these two 

nucleotide changes cause reversion from alanine to lysine at amino acid 61. The SNV 

observed at nucleotide 8333 encodes reversion from alanine to glutamic acid at amino acid 

218. There was no evidence of any modification to the two catalytic tetrad residues that were 

not mutated, NS5-D146 and NS5-K182. Upon rescue of the double mutant, the P0 stock of 

the virus had A61K and A218E reversions in 3.3% and 2.8% of the viral RNA population, 

respectively (Table 5). After a single passage (P1) in Vero cells, the A61K reversion had 

increased to 5.0% of the viral RNA population, while the A218E reversion had increased to 
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4.1% (Tables 4 and 5). After five passages in Vero cells (P5), the NS5-K61A/E218A double 

mutant did not revert to a wild-type consensus sequence, but 41% of the viral RNA 

population encoded reversion at residue NS5–61 and 47.6% encoded reversion at residue 

NS5–218, suggesting that further passage may yield reversion in the consensus sequence 

(Table 5). In comparison, both NS5-K61A and NS5-E218A single mutants had no SNVs of 

> 1% frequency that encoded reversion in P0, P1, or P5 stocks (Tables 4 and 5). Although 

SNVs as low as 0.1% could be detected, the P5 NS5-K61A mutant had no evidence of 

reversion even at very low levels. Alternatively, the P5 NS5-E218A mutant had a SNV 

encoding A218E reversion in 0.2% of the viral RNA population. Shannon entropy was also 

calculated on P1 stocks of each virus as an alternative measurement of diversity for each 

mutant as has been described in previous reports [22, 23], and the results reflected the 

patterns displayed in the SNVs in Table 4 in which NY99ic and the NS5-K61A/E218A 

mutant have low levels of entropy across the genome, and the NS5-K61A and NS5-E218A 

mutants have higher peaks of entropy across the genome (data not shown).

Discussion

WNV NS5-K61A and NS5-E218A mutants have previously been characterized in an 

infectious clone based on WNV strain 3356 isolated from New York in 2000 [12, 13]. The 

mutants generated for this study utilized a different WNV strain backbone based off of a 

similar strain of WNV from New York in 1999 (NY99ic), however, there are 27 nucleotide 

differences and seven amino acid substitutions between the two clones, including a valine to 

alanine substitution in the MTase domain of NS5 (Supplementary Table 1) [8, 24]. 

Additionally, double mutation in the NS5 MTase catalytic tetrad has previously been 

proposed as a vaccine candidate for the four DENV serotypes, however, the homologous 

mutations had not been investigated in WNV prior to this study. Therefore, this paper 

describes the characterization of NS5-K61A and NS5-E218A mutations in an alternative 

model to that which was used by other groups, while simultaneously reporting the first 

investigation of combined NS5-K61A/E218A mutations in WNV.

Consistent with published data using inbred mice, NS5-K61A or NS5-E218A mutation 

caused no lethality in outbred mice when inoculated peripherally with ≥ 100,000 PFU (Table 

2). Significantly, relatively low 500 PFU doses of NS5-K61A and NS5-E218A mutants both 

induced productive immune responses capable of protecting mice from lethal WNV 

challenge (Table 2). As our previous work with attenuated WNV NS1 and NS4B mutants 

found a correlation between low viremia and attenuated neuroinvasion [9–11], it is possible 

that the NS5 MTase mutants do not replicate to high viremia and thus cannot invade the 

central nervous system. This speculation is in agreement with the observation that the MTase 

mutants are sensitive to the antiviral effects of IFIT proteins [13].

Previous studies reported that double mutation of NS5-K61A/E217A (or E216A) in the 

KDKE tetrad was attenuating for the four DENV serotypes [16], but surprisingly, in WNV 

the double mutation caused a reduction of attenuation compared to mutation of either NS5-

K61A or NS5-E218A alone. It was hypothesized that the double mutant had reduced 

attenuation in vivo due to the instability of the combined MTase mutations, and this was 

confirmed by Sanger sequencing of mouse-brain derived viruses. NGS analysis of the Vero 
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cell P1 NS5-K61A/E218A mutant that was used to inoculate mice revealed SNV 

subpopulations that encoded reversions of both mutations. Importantly, the reversion of 

NS5-A61K required the first two nucleotides in the codon to change (AAA to GCA), 

indicating the strong selective pressure on the virus to restore the wild-type genotype and 

MTase activity. To make the NS5-E218A mutation, only one nucleotide in the codon could 

be changed (GAG to GCG) due to the codon similarity; therefore, the A218E reversion only 

required a single nucleotide substitution. Although the P1 stocks of the single mutants that 

were used in the mouse studies had more SNVs > 1% detected across the genome, none 

encoded reversion. NS5-K61A had no SNVs in the MTase domain at all (NS5 amino acids 

1–267), while NS5-E218A only had one SNV in the MTase at amino acid 30, which is not 

structurally neighboring the MTase catalytic tetrad. While the double mutant had few SNVs 

detected overall, three out of nine encoded reversion. Although the NGS reads were not long 

enough to show whether or not the A61K and A218E reversions were encoded on the same 

sequencing contigs, we hypothesize that the reversions occurred simultaneously since the 

virus would be expected to have an attenuated phenotype if either of the mutations remained. 

Interestingly, for all four DENV serotypes, double mutation of NS5-K61A/E217A (or 

E216A) was stable in the consensus sequences after five passages in Vero cells [16, 25], and 

the consensus genome of the double mutant was also stable in our study after five passages 

of the WNV mutant in Vero cells; however, there was >40% reversion to wild-type evident 

in the SNVs indicating the consensus sequence may revert upon continued passage. The P5 

stock of the NS5-K61A mutant had no evidence of reversion, but the P5 stock of NS5-

E218A had a small 0.2% SNV encoding reversion. The small A218E SNV in the P5 NS5-

E218A mutant could potentially decrease the attenuation of this mutant, but it is unclear how 

high SNV frequency has to be to impact pathogenicity.

Along with investigation of reversion in SNVs, a NS5-T728I variant stood out for its high 

frequency (43.1%) in the P1 virus stock of the attenuated NS5-E218A mutant (Table 4). 

Residue NS5–728 resides in the thumb region of the RdRp, and this region is important for 

providing ssRNA access to the catalytic site in the palm domain [26]. NS5–728 resides in 

the interface between the thumb and palm domain [26], so it is possible that the SNV at this 

residue alters ssRNA access to the RdRp catalytic site. This could potentially attribute to the 

increased multiplication kinetics of the NS5-E218A mutant compared to the NS5-K61A 

mutant, but additional studies are needed to better understand how the NS5-T728I mutation 

may influence the WNV phenotype. Of note, the P5 virus stock of the NS5-E218A mutant 

retained this SNV in 41% of viral RNA, so the frequency remained fairly constant following 

five cell culture passages.

Despite conserved amino acids and functions of the KDKE catalytic tetrads, differences in 

the DENV and WNV MTase could allow double mutation in the MTase catalytic tetrad to be 

stable in DENV but not in WNV. Structural studies have identified the GTP-binding domain 

required for MTase function in DENV, and one of the key amino acids, proline at NS5–152, 

is a serine in WNV (Figure 5) [27]. It is possible that DENV and WNV have a different 

affinity for GTP-binding that permits stability of double mutations in the DENV MTase, but 

not in WNV [27], however, GTP-binding affinities of WNV and DENV NS5 proteins have 

not been compared.
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The MTase single mutants were similar to those previously studied in that the largest 

reductions in multiplication kinetics in Vero cells compared to wild-type were between 24–

36 hpi, but in contrast to other studies [12], the NS5-K61A and NS5-E218A mutants had 

similar kinetics to one another (Figure 2a). In DENV-2, NS5-K61A/E217A mutations 

caused approximately 10-fold reduction in Vero cell multiplication kinetics from 24–120 hpi 

compared to wild-type, and the DENV-2 double mutant had lower infectivity titers at 48 hpi 

compared to either of the single mutants [15]. In WNV, double mutation in the MTase 

domain did not decrease multiplication kinetics compared to either of the single mutants, 

and at 24 hpi the double mutant had an infectivity titer that was higher than either of the 

single mutants and was approaching that of NY99ic (Figure 2a). Therefore, Vero cell 

multiplication kinetics indicated that the NS5-K61A/E218A had a different phenotype than 

that which was observed for DENV-2 and for the WNV MTase single mutants. However, 

this different phenotype may be contributed by the 4–5% wild-type reversion of the double 

mutant P1 seed that outcompetes the double mutant virus replication during multiplication at 

a MOI of 01.

In previous studies, WNV and DENV MTase mutants were found to have increased 

sensitivity to the antiviral activity of IFN-I induced IFIT proteins compared to wild-type 

WNV, but they induced equivalent levels of IFN-β [13, 15]. Although IFN-α and IFN-β 
levels were not statistically different when comparing the WNV NS5 mutants to NY99ic, it 

is notable that the NS5-K61A/E218A mutant exhibited a trend toward increased IFN-I 

production (Figure 3). The NS5-K61A mutant had the greatest reduction in A549 cell 

multiplication kinetics (Figure 2b), indicating that this mutant may be more sensitive to IFN-

I signaling than NS5-E218A or NS5-K61A/E218A. Despite differences in viral titer, both 

single mutants increased levels of CCL2 compared to NY99ic, but only NS5-E218A caused 

a decrease in pro-inflammatory cytokines IL-6 and TNF-α, and only NS5-K61A increased 

the induction of CXCL10. Either of the observed innate immune modifications could be 

protective, considering high levels of inflammatory cytokines could increase WNV 

neuroinvasion [28, 29], and both CCL2 and CXCL10 are important chemokines for 

protection from WNV neurological disease [30–33]. The NS5-K61A/E218A double mutant 

induced significantly more G-CSF, CXCL10, and CCL5 compared to NY99ic. While G-CSF 

is not often studied in the context of WNV infection, it can function as a neuronal ligand to 

reduce apoptosis [34], indicating that it could contribute to protective immunity against 

WNV neurological disease. Likewise, both CXCL10 and CCL5 are important chemokines 

for WNV control in mice [30–32, 35], and genetic deficiency of the CCL5 receptor, CCR5, 

is a risk factor for symptomatic WNV disease in humans [36, 37]. Although the NS5-K61A/

E218A mutant induced potentially protective cytokines and chemokines in vitro, this 

phenotype did not correlate with attenuation in the outbred mouse model. As described for 

the TS phenotypes, it is possible that the double mutant could induce a protective immune 

response leading to viral attenuation if the mutations were stable and could not revert to 

wild-type sequence.

In sum, this report describes the first genotypic and phenotypic characterization of double 

mutation of the NS5 MTase catalytic tetrad in WNV. Although in vitro studies of the NS5-

K61A/E218A mutant suggested the mutations could be attenuating, the virus was more 

virulent than either of the MTase single mutants tested. Even though the NS5-K61A/E218A 

Kaiser et al. Page 10

Vaccine. Author manuscript; available in PMC 2020 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mutant did not have the attenuated phenotype expected, the independent mutations NS5-

K61A and NS5-E218A were strongly attenuating and protective as was reported in previous 

studies using a different infectious clone and alternative animal models. Sequencing analysis 

of each mutant used in the mouse studies indicated that mutation of a single amino acid in 

WNV NS5 MTase catalytic tetrad was stable, whereas, double mutation of both amino acids 

simultaneously gave rise to reversion. Since the single site NS5-K61A and NS5-E218A 

mutations were stable and attenuated in vivo, they remain good candidates to consider for 

rational WNV vaccine development. Considering that the P5 stock of NS5-E218A had a 

very small frequency SNV (0.2%) encoding reversion of A218E, NS5-K61A appears to be a 

more stable mutation and thus may be a safer choice for inclusion in a candidate vaccine. 

Since a live WNV vaccine would ideally harbor multiple attenuating mutations, NS5-K61A 

should be characterized in the context of additional independently attenuating mutations in 

other viral genes.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mutation of the viral NS5 methyltransferase active site attenuates flaviviruses

• Single site mutation of NS5-K61A or E218A strongly attenuates West Nile 

virus

• Simultaneous double mutation of NS5-K61A/E218A does not attenuate West 

Nile virus

• When combined, NS5-K61A/E218A mutations are capable of reversion to 

wild-type
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Figure 1. 
Structure of WNV NS5 methyltransferase domain. Amino acids displayed in pink represent 

the K61-D146-K182-E218 methyltransferase catalytic tetrad.
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Figure 2. 
Multiplication kinetics in Vero and A549 cells at moi of 0.1 measured at 37°C
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Figure 3: 
Extracellular cytokines Measured at 36 hpi in A549 cell supernatants * p < 0.05, ** p < 

0.01, *** p < 0.001 **** p < 0.0001 in Kruskal-Wallis test with Dunn’s multiple 

comparisons.

IFN = interferon, IL = interleukin, TNF = tumor necrosis factor, G-CSF = granulocyte 

colony-stimulating factor, CXCL and CCL = chemokine ligand, IP = interferon gamma-

induced protein, MCP = monocyte chemoattractant protein, RANTES = regulated on 

activation, normal T cell expressed and secreted
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Figure 4. 
Single nucleotide variant profiles of P1 virus stocks. Each ‘x’ represents the frequency of a 

SNV, and the grey bars display the total number of SNVs detected.
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Figure 5. 
Structural alignment of WNV and DENV NS5 methyltransferase. The catalytic tetrad is 

shown in magenta. Proline152 in DENV is shown in blue, while Serine152 in WNV is 

shown in red
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Table 1

Temperature sensitive phenotype in Vero cells

37° 41° Delta

Log10 PFU/mL

NY99ic 8.2 8.1 0.1

K61A 7.3 7.1 0.2

E218A 7.3 6.9 0.4

K61A/E218A 8.5 7.4 1.1

PFU/mL = plaque=forming units per mililiter
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Table 2

Survival analysis

Virus
# Mice survived 500 

PFU
Average Survival Time (days) ± 

SD
# Mice protected 104 PFU 

NY99ic challenge
Dose (PFU) Survival

NY99ic 0/10 9.4 ± 1.3 n.d. n.d. n.d.

K61A 5/5 >35 5/5 2.9×105 5/5

E218A 5/5 >35 5/5 3.8×105 5/5

K61A/E218A 3/10 #*
11.1 ± 1.7 2/2 4.2×107 3/5

Groups of five 5–6 week-old NIH Swiss Webster outbred mice were inoculated by the intraperitoneal (i.p.) route.

#
calculated from mice that died

PFU = plaque-forming units

SD = standard deviation

Significance was tested using a Mann Whitney test to compare mutant survival time to NY99ic survival time.

*
p=0.02
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Table 3

Mouse brain-derived virus titers and consensus sequences

Time of death (days 
post infection)

Viral titer in brain 
(log10 PFU/gram)

Consensus sequence at 
nucleotide 7861 (NS5–61) [amino 

acid]

Consensus sequence at 
nucleotide 8333 (NS5–218) 

[amino acid]

Input Virus - - GCA [A] GCG [A]

Mouse 1 8 8.7 AAA [K] GAG [E]

Mouse 2 10 4.9 AAA [K] GAG [E]

Mouse 3 12 4.9 AAA [K] GAG [E]

Mouse 4 12 4.4 AAA [K] GAG [E]

Brains were harvested from mice that died from the 500 PFU intraperitoneal inoculation of the NS5-K61A/E218A mutant.

PFU = plaque-forming units
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Table 4

Summary of single nucleotide variants >1% of viral RNA populations in P1 cell culture stocks of NY99ic and 

each NS5 mutant.

Nucleotide 
Position

Major 
Nucleotide

Minor 
Nucleotide

Viral Protein 
Position

Major 
Residue

Minor 
Residue

Frequency 
(%)

NY99ic

103 A G C-3 K E 2.1

106 A G C-4 K E 2.0

532 A U prM-23 I F 1.7

653 A C prM-63 E A 1.1

981 A G E-5 G G 1.9

1072 A G E-36 K E 1.7

1588 A U E-208 T S 1.5

2135 A G E-390 E G 1.4

5952 A U NS3–447 P P 1.0

7981 A C NS5–101 R R 1.4

9278 A U NS5–533 Y F 1.2

K61A

106 A C C-4 K Q 6.6

306 A G C-70 R R 4.6

307 G A C-71 G S 4.7

388 C A C-98 R R 8.6

489 G A prM-8 G G 6.9

492 G A prM-9 K K 3.6

507 A G prM-14 V V 16.1

756 G A prM-97 Q Q 14.2

768 A G prM-101 E E 1.5

788 A G prM-108 K R 13.1

1415 A G E-150 E G 2.2

2184 A G E-406 K K 6.3

2798 A G NS1–110 K R 5.0

3337 A G NS1–290 S G 2.9

4387 A G NS2B-57 T A 1.9

4540 A G NS2B-108 S G 7.5

4740 A G NS3–43 E E 1.9

4862 A G NS3–84 K R 2.2

5925 A G NS3–438 G G 1.6

6106 A C NS3–499 I L 6.1

6197 A G NS3–529 E G 3.0

6295 A G NS3–562 R G 1.0

7015 U C NS4B-34 L L 16.9

7578 A G NS4B-221 T T 1.4

8815 A G NS5–379 T A 18.5

8947 A U NS5–423 S C 4.4

9092 A G NS5–471 K R 3.8
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Nucleotide 
Position

Major 
Nucleotide

Minor 
Nucleotide

Viral Protein 
Position

Major 
Residue

Minor 
Residue

Frequency 
(%)

9570 A G NS5–630 G G 3.8

9766 A G NS5–696 I V 7.3

9936 C A NS5–752 N K 4.7

10417 A G 3’ UTR - - 8.4

10807 A G 3’ UTR - - 12.0

10814 A U 3’ UTR - 1.6

10888 U A 3’ UTR - - 1.2

E218A

353 A G C-86 K R 2.5

555 A G prM-30 G G 2.4

557 A G prM-31 K R 2.4

1303 A G E-113 I V 3.1

1525 A G E-187 T A 5.2

1531 G A E-189 D N 3.5

1996 G A E-344 A T 13.2

2148 U C E-394 N N 2.3

2176 A G E-404 I V 3.2

4479 C G NS2B-87 L L 3.4

4686 C U NS3–25 I I 3.6

4976 A G NS3–122 E G 11.8

5684 A G NS3–358 K R 6.9

5713 A G NS3–368 M V 2.1

7427 A G NS4B-171 K R 2.3

7557 A G NS4B-214 A A 4.8

7768 G A NS5–30 E K 5.0

9160 C U NS5–494 L F 1.3

9855 U C NS5–725 D D 1.1

9863 C U NS5–728 T I 43.1

10814 A U 3’UTR - - 1.8

K61A/
E218A

285 A G C-63 R R 1.6

763 G C prM-100 G R 1.4

5166 G A NS3–185 R R 1.0

6686 A C NS4A-73 Q P 1.6

7657 A U NS4B-248 M L 1.6

7861 G A NS5–61
*A *K 5.0

7862 C A NS5–61

8333 C A NS5–218 A E 4.1

10814 A U 3’ UTR - - 1.2

Amino acid residues highlighted in blue are coding substitutions.

*
SNVs at nucleotide 7861 and 7862 were encoded simultaneously
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Table 5:

Evidence of reversion of the NS5-K61A/E218A mutant increases after Vero cell passage

Virus P0 P1 P5

K61A < 0.1% < 0.1% < 0.1%

E218A < 0.1% < 0.1% 0.2%

K61A/E218A 3.3% / 2.8% 5.0% / 4.1% 41% / 47%

The frequency of reversion in single nucleotide variants (SNVs) of cell culture stocks of each NS5 mutant are listed. The limit of SNV detection for 
the LoFreq analysis was 0.1%.

P0, P1, P5 = Vero cell passage 0, 1, or 5
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